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ABSTRACT
Many wearable embedded systems benefit from classification
algorithms where statistical features extracted from physio-
logical signals are mapped onto different user’s states such
as health status of a patient or type of activity performed
by a subject. Conventionally selected features lead to rapid
battery depletion in these battery-operated systems, mainly
due to the absence of computing complexity criterion while
selecting prominent features. In this paper, we introduce the
notion of power-aware feature selection, which minimizes en-
ergy consumption of the signal processing for classification
applications. Our approach takes into consideration the en-
ergy cost of individual features that are calculated in real-
time. The problem is formulated using integer programming
and a greedy approximation is presented to select the fea-
tures in a power-efficient manner. Experimental results on
thirty channels of activity data demonstrate that our ap-
proach can significantly reduce energy consumption of the
computing module resulting in more than 30% energy sav-
ings while achieving 96.7% classification accuracy.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special Pur-
pose and Application-Based Systems—Real-time and em-
bedded systems; J.3 [Computer Applications]: Life and
Medical Science—Health; H.1.2 [Information Systems]:
Models and Principles—User/Machine Systems Human in-
formation processing; Human factors.

General Terms
Design, Algorithms, Experimentation.

Keywords
Wearable Monitoring, Embedded Signal Processing, Activ-
ity Recognition, Feature Selection, Power Optimization.
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1. INTRODUCTION
Recent technology advances have led to the development

of different sensing, computing and communication artifacts
that are becoming essential part of our daily lives. These
ubiquitous platforms have proved to be effective in a num-
ber of domains ranging from medical and well-being to mil-
itary and smart vehicles. A special class of these platforms
is wearable monitoring where computational elements are
tightly coupled with the human body. As these embedded
systems continue to become more pervasive, design and de-
velopment of low-power architectures that enable their sus-
tainable realization becomes much more crucial. Low power
design is even more challenging in wearable systems that are
battery-operated and are known as enabling technologies for
many applications such as remote patient monitoring and
personalized healthcare, gaming and sports, maintenance,
production and process support [1, 2].

An important aspect of low power design is to optimize
power consumption of the computing modules. Wearable
monitoring systems often employ embedded signal process-
ing and machine learning blocks that use sensor data (e.g.
acceleration of body joints) to extract relevant information
(e.g. human movements) about their subjects.

We take special interest in classification applications, where
physiological signals from human body are used to classify
different states of a subject. Examples of such applications
include human action recognition and fall detection using
accelerometer and gyroscope sensors, and arrhythmia de-
tection from ECG signals. In the classification process, a
set of representative features, such as ‘signal amplitude’ and
‘root mean square’ power, are typically extracted from the
measured signals prior to executing the classification algo-
rithm. Feature extraction is often time consuming and can
deplete the battery if an exhaustive feature set is considered.
In this paper, we propose the notion of power-aware feature
selection which introduces a novel approach for optimizing
the power efficiency of feature extraction mechanisms. Our
approach combines three criteria, namely, feature relevance,
feature redundancy, and computing complexity and builds
a minimum cost feature set without sacrificing the classifi-
cation performance of the system.

Unfortunately, none of the feature selection techniques
studied in the past takes into consideration computing com-
plexity of the selected features, an important measure in
designing wearable monitoring systems. Similarly, none of
the existing power-aware schemes in embedded system de-
sign has dealt with feature selection algorithms and how
the energy constraints prevent some features from being ac-
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counted for classification. Our work embodies the innova-
tion of the notion of power-aware feature selection; we model
the problem of energy optimal feature set and prove that it
constitutes a computational problem that is NP-hard and
finally we provide an approximation to find the appropriate
minimum cost feature set. Real human motion data sets are
used in order to verify the efficacy of the proposed approach.

Our contributions can be summarized as follows: 1) we
introduce the notion of power-aware feature selection by
adding a new design dimension, computing complexity, to
the feature selection problem; 2) we propose a graph model
that embodies information regarding classical feature selec-
tion, relevance and redundancy; 3) we present an Integer
Linear Programming (ILP) formulation of our optimization
problem and provide a greedy approximation to solve it; 4)
we use real data collected from a wearable sensor network
designed for movement monitoring to evaluate the effective-
ness of our power optimization approach.

2. RELATED WORK
Our study spans two broad research topics, feature selec-

tion and power-aware design, that are disjointedly explored
in machine learning and embedded system design fields, re-
spectively.

In general, feature selection [3, 4] aims to find an optimal
set of features from an exhaustively extracted set of fea-
tures. The optimality of the solution, however, is defined by
two criteria, relevance and redundancy [5]. While relevance
criterion focuses on eliminating features that are irrelevant
to the classification task, redundancy criterion uses inter-
feature correlation measures to eliminate features with high
correlation.

The tight energy constraints of battery-operated wearable
monitoring systems call for the development of energy-aware
signal processing methods to preserve energy [6]. Depend-
ing on the application and signals involved, it may be more
useful and energy-efficient to trade off radio communications
energy for processing energy, or vice versa. Dynamic sensor
selection [7] which trades off classification accuracy for bat-
tery lifetime is another power saving approach. The method
proposed in [8] minimizes the number of nodes necessary to
obtain a given classification ratio for activity recognition.

3. PRELIMINARIES
Several basic concepts are reviewed in this section with an

emphasis on the architecture of wearable monitoring plat-
forms, their signal processing, and information extraction
from physiological signals.

3.1 Wearable Monitoring Systems
A wearable monitoring system, also called body sensor

network, is composed of several body-worn sensor nodes
and a gateway. Each sensor node is attached to the body
to sample and process physiological signals, and transmit
partial results to the gateway. A node usually has several
sensors for capturing different user’s states (e.g. body accel-
eration), an embedded processor to perform limited signal
processing and information extraction, and a radio for data
transmissions. The gateway is a more powerful unit such as
a cell phone or a PDA that performs data fusion and makes
conclusions about current state of the user (e.g. ‘walking’,
‘running’, and ‘sitting’). The results are further transmit-
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Figure 1: Signal processing for classification appli-
cations

ted, through the Internet, to a back-end server for storage,
further processing, and clinical decision support.

The focus of this study is primarily on power optimization
of the wearable sensor nodes, where stringent constrained
sensor units are used to process physiological signals in real-
time. Other elements (e.g. gateway and back-end server)
are usually powerful in terms of computing power.

Each sensor node processes sensor readings through a chain
of embedded signal processing modules, each of which is in-
tended to extract partial information from the signal and
reduces the amount of sampled data. Figure 1 illustrates a
typical signal processing flow for applications targeting clas-
sifying physiological signals into user’s states. In physical
movement monitoring applications, readings from motion
sensors such as accelerometers, magnetometers, and gyro-
scopes undergo signal processing to classify human actions
such as ‘walking’, ‘sit to stand’, and ‘jumping’. The sig-
nals that are sampled by each sensor node are first passed
through a filter to reduce high frequency noise. Segmenta-
tion is intended to identify ‘start’ and ‘end’ points of the
actions being classified. Feature extraction module is re-
sponsible for calculating statistical and morphological char-
acteristics of the signal segment. Finally, a classification
algorithm is utilized to determine the current state of the
user (e.g. type of actions being performed by the user).
Signal processing and pattern recognition require a learn-
ing phase during which the system is trained based on a
training data set. During this phase, parameters of the sys-
tem used in different signal processing modules are adjusted.
Such parameters define the training model and will be used
throughout the operation of the system. Feature selection
(as specified by dashed lines in Figure 1) is only part of the
learning process. The selected features, however, determine
complexity of the feature extraction block during execution
of the system.

3.2 Feature Relevance and Redundancy
Feature selection is a learning process aimed to find signif-

icant features for the classification application. Initially, an
exhaustive set of features is extracted due to lack of domain
knowledge. Many features might be redundant due to their
strong correlation with other features. Yet, non-redundant
features can be irrelevant to a specific classification applica-
tion. Feature selection is a mature field of study in machine
learning with primary selection criteria being redundancy
and relevance [5].

To better present the concept of relevance and redun-
dancy, we give a simple example adapted from [5]. Assume
that the feature set {f1, f2, . . . , f5} is given, where a clas-
sification decision is made based on a binary function g as
C = g(f1,f2). Furthermore, let f2=f̄3 and f4=f̄5. Clearly,
f1 is a required feature as it is necessary for classification
and is not redundant with respect to other features. Also,
features f4 and f5 are redundant because they are not used
to make a classification decision. We note, however, that f2
and f3 can be interchanged as they are equally informative.
Thus, an optimal feature set is either {f1,f2} or {f1,f3}.
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Figure 2: Proposed approach for optimal power-
aware feature selection

4. PROPOSED APPROACH
Figure 2 illustrates our approach for power-aware feature

selection. Given an initial feature set, F , irrelevant features
are first eliminated from subsequent processing. A redun-
dancy analysis is then performed to find features that are
strongly correlated and can be substituted once power effi-
ciency of the processing is taken into account. To this end, a
graph model, called redundancy graph, is constructed based
on the correlation information obtained during the redun-
dancy analysis. Finally, the graph model is used to solve an
optimization problem, called Minimum Cost Feature Selec-
tion (MCFS), meant for finding the optimal feature set.

4.1 Graph Model
Our relevance and redundancy analyses, which provide in-

puts to construct the graph model and formulate the prob-
lem, are based on the concept of symmetric uncertainty:

Definition 1 (Symmetric Uncertainty). The sym-
metric uncertainty between two discrete random variables X
and Y is given by:

U(X,Y ) =
2I(X,Y )

H(X) +H(Y )
, (1)

where H(X) and H(Y ) represent the entropy of random
variables X and Y , respectively, and I(X,Y ) denotes the
information gain between the two variables. I(X,Y ) is fur-
ther defined by:

I(X,Y ) = H(X)−H(X|Y ) (2)

The symmetric uncertainty is actually the normalized in-
formation gain and is always between 0 and 1, where U=1
means that knowing the value of either variable can com-
pletely predict the other variable, and U=0 indicates that
the two variables are completely independent.

We note that the symmetric uncertainty is a measure of
correlation between two random variables. Major advantage
of this measure against other measures, such as correlation
coefficient, is that the symmetric uncertainty can capture
non-linear correlation between variables and therefore, is a
safe measure for our feature analysis study.

Definition 2 (Irrelevant Feature). Given an exhaus-
tive set of n features F={f1, f2, . . . , fn} and a set of human
actions A = {a1, a2, . . . , ah } to be classified, a feature fi
is irrelevant to the classification task if

minj (U(fi, aj)) < λR, (3)

where λR (relevance threshold) is a design parameter.
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w5

w2
w1

w4w3

Figure 3: A motivational example for power-aware
feature selection

Relevance analysis will eliminate features that are irrele-
vant to the action recognition. The remaining m features
(m<n) are subject to redundancy analysis whose main goal
is to find strongly correlated features.

Definition 3 (Strongly Correlated Features). Two
features fi and fk are considered to be strongly correlated if

U(fi, fk) > λD, (4)

where λD (redundancy threshold) is a design parameter.

The output of redundancy analysis is a set of feature pairs
in the form of (fi,fk), which are strongly correlated and
either of them can be eliminated according to the correlation
analysis. However, these features are further examined for
computing complexity using the graph model presented in
the following section.

Definition 4 (Redundancy Graph). Given m relevant
features introduced by the relevance analysis and a set of
feature pairs {fj,fk} generated according to the redundancy
analysis, an undirected graph G=(V,E,W) is called redun-
dancy graph, where V is a set of m vertices, V = {u1, u2,
. . . , um} associated with the m relevant features, E={e1,
e2, . . . , er} is the set of r feature pairs that are strongly
correlated, and W={w1, w2, . . . , wm} is the set of weights,
assigned to the vertices, denoting the computing cost associ-
ated with each feature.

4.2 Feature Selection
We now present a simple example to motivate our idea of

finding the optimal feature set using MCFS. Assume that 10
features construct our exhaustive set of features, represented
by F = {f1, f2, . . . , f10}. Further, assume that the relevance
analysis decides to eliminate five features and hence, the
redundancy graph will contain five features, i.e. R = {f1,
f2, f3, f4, f5}. The redundancy graph with each vertex
representing one of the five features is shown in Figure 3.
Note that the processing cost attributed to each feature is
represented by the weight of each vertex, e.g., w1 is the
processing cost of f1.

Let all the weights be equal to one unit, that is W =
{w1, w2, w3, w4, w5} = {1, 1, 1, 1, 1}. In this case, MCFS
treats all features equally and thus, the optimal feature set
consists of two vertices, specifically f1 and f3. However, if
we modify the weight set to W = {10, 1, 1, 1, 1}, MCFS
gives more consideration to vertices with lower weights and
accordingly, features f4 and f5 will be favored over f1. In
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the recent scenario the optimal feature set will contain three
vertices, i.e. f4, f5, and f3. As such, the computation energy
cost will be decreased from 11 units to 3 units.

5. MINIMUM COST FEATURE SELECTION
In this section, we present an optimization problem that

finds optimal feature set taking into account relevance, re-
dundancy and complexity criteria discussed previously. The
problem takes a redundancy graph as input and outputs a
subset of relevant features that are optimal in terms of com-
puting complexity and do not exhibit any redundancy.

Problem 1. Given a redundancy graph G=(V,E,W), the
minimum cost feature selection problem is to find a subset
of vertices that are not dominated by any other vertex in the
graph and their total cost is minimized.

5.1 Problem Formulation and Complexity
Assume that aij is a given binary that encodes existence

of edges in the redundancy graph:

aij =

{
1, if (ui,uj) ∈ V
0, otherwise

(5)

and xi is a binary variable which determines whether or not
a vertex ui is chosen as a member of the final vertex set:

xi =

{
1, if vertex ui is chosen
0, otherwise

(6)

The corresponding ILP formulation for the MCFS prob-
lem is as follows:

Minimize
m∑
i=1

wixi, (7)

subject to:

m∑
j=1

xiaij ≥ 1 ∀i ∈ {1, 2, . . . ,m} (8)

xi ∈ {0, 1} (9)

The objective function in (7) is to minimize the total cost
of the selected vertices (i.e. those with xi=1). The con-
straint (8) guarantees that each selected vertex is adjacent
to at least one more vertex and the constraint in (9) ensures
that the variable xi takes only binary values.

The MCFS problem is equivalent to the Minimum Cost
Dominating Set (MCDS) problem. The MCDS problem is
proved to be NP-hard by reduction from the Weighted Set
Cover (WSC) problem.

Theorem 1. The MCFS problem is NP-hard.

Proof. Proof is eliminated for brevity.

5.2 Greedy Approach
Our greedy algorithm for solving MCFS problem is pre-

sented in Algorithm 1. For each vertex in the redundancy
graph, the algorithm first finds all adjacent vertices (Vi). It

Algorithm 1 Greedy solution for MCFS problem

Require: Redundancy graph G=(V,E,W)
Ensure: Final vertex set O

O = φ
for all ui ∈ V do

Vi = {all vertices uj adjacent to ui}
end for
while V �= φ do

Vi ← argmaxVi

|Vi|
wi

and O ← O ∪ ui

Eliminate uj from all Vi sets and V
end while

then finds the best candidate vertex to include that vertex
in the final vertex set (O). The best candidate is the one
with maximum value of ‘cardinality of Vi divided by vertex
cost wi’. The intuition behind selecting such vertex is that
it has a large number of adjacent vertices and a small cost.
Finally, the algorithm adds the candidate vertex (ui) to O
and eliminates ui and all its neighbors from Vi as well as V .
The algorithm iterates until there is no more vertex in V
indicating that each vertex is either chosen as a final vertex
or is dominated by a final vertex.

Theorem 2. Algorithm 1 achieves an lnn approxima-
tion to the MCFS problem.

Proof. Proof is eliminated for brevity.

6. EXPERIMENTAL RESULTS
In this section, we demonstrate the performance of the

proposed feature analysis techniques utilizing real data col-
lected from three human subjects using wearable motion
sensors. Motion sensors were used to measure acceleration
and angular velocity of six different body segments (includ-
ing upper and lower body limbs) while the subjects were
instructed to perform 14 transitional movements listed in
tblrefmvts. The collected data were partitioned into two
disjoint data sets, one for solving the proposed optimization
problem and the other for measuring classification accuracy
of the system on the selected features. The energy consump-
tion of the feature extraction module was estimated on TI
MSP430 microcontroller.

Table 1: Experimental movements
No. Movement
1 Stand to Sit
2 Sit to Stand
3 Sit to Lie
4 Lie to Sit
5 Bend to Grasp
6 Rising from Bending
7 Kneeling Right
8 Rising from Kneeling
9 Look Back
10 Return from look back
11 Turn Clockwise
12 Step Forward
13 Step Backward
14 Jumping
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Figure 4: Number of relevant features and classifi-
cation accuracy as a function of λR

6.1 Parameter Setting
One of the parameters used to solve our optimization

problem is the energy consumed for processing each feature
(wi). Energy consumption variation for different features
stems from different instruction types, circuit states, and
memory address modes, as well as the overall complexity of
each feature. We consider TI MSP430 processor in order to
find each feature’s processing energy. The MSP430 is widely
used in wearable monitoring applications. These systems are
obviously in need of low power consumption and MSP430
nicely meets such need (594 μW power consumption on av-
erage, which yields a performance of 37 μW/MIPS).

MSP430 is a 16-bit RISC CPU that uses the Von Neu-
mann architecture. It has 48KB of Flash memory, 10KB
of RAM, and uses an 8 MHz clock. The processor benefits
from a 3-stage pipeline with 16 general purpose registers.
Twenty-seven instructions comprise the instruction set with
7 memory addressing modes available.

As a multiplier is a peripheral and is not implemented in
every member of the MSP430 family, we utilized a method
based on the Horner’s approach to implement multiplication
only by means of shift and add instructions. It is worthy of
attention that MSP430 can perform a register shift or add
in one instruction cycle.

We calculated energy consumption of feature extraction
block in Figure 1 for calculating each of the 9 features listed
in Table 2 using the MSP430 microcontroller, which is avail-
able on the TelosB motes used in our experiments.

6.2 Relevant Features
Figure 4 shows the number of relevant feature and clas-

sification accuracy as a function of the relevance threshold
(λR). Clearly, the number of relevant features decreases as

Table 2: Energy consumption of feature extraction
for individual features
Feature Energy (nJ) Description
Amp 16386 Signal amplitude (Max - Mean)
Med 405159 Median of signal segment
Mean 8126 Mean value of signal segment
Max 8103 Maximum amplitude of signal segment
P2P 16291 Peak to peak amplitude
Var 38846 Variance of signal segment
Std 40431 Standard deviation
RMS 29705 Root mean square power
S2E 83 Start to end value
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Figure 5: Optimal number of features and accuracy
(using ILP solution)

0.05 0.1 0.15
0

10

20

30

40

50

# 
Fi

na
l F

ea
tu

re
s

λD

Results using Greedy

 

 

0.05 0.1 0.15

75

80

85

90

95

100

A
cc

ur
ac

y 
(%

)

# Features
Accuracy

Figure 6: Number of features and accuracy for
greedy algorithm

the threshold in (3) increases. A very small value of λR

results in all the original 270 features being evaluated as
relevant. With the complete feature set, the classification
accuracy is 79.5% at the beginning. As the threshold in-
creases, the accuracy improves as a result of irrelevant fea-
tures being eliminated from the classification process. The
accuracy, however, starts decreasing at λR = 0.03 indicating
that the threshold is exceeding its optimal value and some
relevant features start being eliminated from the list. Thus,
we consider λR = 0.03 as the optimal threshold value for
our relevance analysis and perform the rest of our feature
analysis with this value. Note that this threshold results in
51 relevant features.

An interesting observation is that irrelevant features can
significantly reduce the performance of the action recogni-
tion system. We observe that by eliminating irrelevant fea-
tures, the accuracy of the classification exhibits more than
21% improvement (i.e. from 79.5% with all 270 features to
96.7% with 51 features as obtained by λR = 0.03 in Fig-
ure 4).

6.3 Optimal Feature Set
Figure 5 shows the number of optimal features and classi-

fication accuracy versus the redundancy threshold (λD) us-
ing the ILP approach. It should be noted that according to
the redundancy criterion in (4), a larger value of λD results
in less features being considered as strongly correlated and
therefore, the redundancy graph will have smaller number
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Figure 7: Energy consumption reported by optimal
solution (ILP) as well as greedy approximation

of edges. With a small number of edges, more vertices need
to be considered to cover all the vertices. This can result
in a larger optimal set as Figure 5 shows. As the threshold
increases from 0.05 to 0.15, the number of selected features
grows from 4 to 44 with an average of 20.7 features. The
classification accuracy ranges from 80% for λ=0.05 to 96.7%
for λ=0.15. The classification accuracy is 90.1% on average.

The classification accuracy and number of final features
reported by our greedy solution are illustrated in Figure 6.
For the greedy approach, the number of selected features
ranges from 5 to 47 depending on the design parameter λD.
The optimal feature set has a length of 24.2 features on
average. The accuracy ranges from 79.5% for the lowest
threshold to 96.7% for λ=0.15, with an average accuracy of
90.0%. We note that, unlike the ILP solution, the greedy
approach does not result in a monotonically increasing ac-
curacy curve. The accuracy curve for the greedy approach
has a local minimum at λD = 0.13. This is in fact due to
the sub-optimality of the greedy approach, which does not
necessarily select the optimal feature set at each step.

6.4 Energy Analysis
Figure 7 shows the total energy consumption of the se-

lected features obtained by the ILP and greedy solutions.
For optimal case, the energy values range from 33μJ for λD

= 0.05 to 1184μJ for λD = 0.15, resulting in an energy con-
sumption of 467μJ on average. The energy consumption
results for the greedy approach range from 33μJ to 1204μJ
with an average of 484μJ.

Table 3 lists energy savings obtained by applying our
power-aware feature selection technique. For this specific
table, only ILP results are reported. For greedy approach,
however, similar results are achieved. The energy savings for
the greedy solution range from 29.6% for the highest accu-

Table 3: Energy savings using the proposed method
λD Saving (%) Accuracy (%)
0.05 98.1 80.8
0.07 96.2 85.6
0.09 90.3 89.1
0.11 77.2 92.9
0.13 43.6 95.7
0.15 30.7 96.7
Avg. 72.7 90.1

racy (96.7%) to 98.1% for the lowest performance (79.5%).
This results in an average energy saving of 71.6% using the
greedy solution.

7. CONCLUSION AND FUTURE WORK
The accuracy and power trade-offs in wearable monitoring

systems have been investigated, that is, guaranteed classifi-
cation accuracy is required, while minimizing the system’s
power consumption. Our study in this paper accounts for
energy consumption in the process of feature selection. To
achieve that, we first formulated the problem as a weighted
minimum set cover approximation, which is one of the old-
est and most studied NP-hard problems. We then devised a
greedy approach to select the features needed for the identifi-
cation of activities being performed in a power-efficient man-
ner. Experimental results on inertial data collected from real
subjects demonstrated significant power savings. In the fu-
ture, we will investigate dynamic feature selection and node
activation based on the contextual information about the
subject in real-time. That is, information such as subject’s
location and current activity can be used in real-time to fur-
ther eliminate power-hungry features and deactivate sensor
nodes not contributing to the classification.
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